منابع مشابه
Multiplexed ionic current sensing with glass nanopores.
We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.
متن کاملIon Conducting Nanopores for (Bio)molecular Sensing: the iNAPO Project
Single conical nanopores in polymer foils are fabricated by means of the ion track etching technique. They are chemically modified so that they selectively react with certain molecules to be analyzed. This specific reaction is electrochemically monitored by measuring the electrolyte current flowing through the nanopores in an electrochemical cell. This current is dependent on the presence and c...
متن کاملPotentiometric sensing of nucleic acids using chemically modified nanopores.
Unlike the overwhelming majority of nanopore sensors that are based on the measurement of a transpore ionic current, here we introduce a potentiometric sensing scheme and demonstrate its application for the selective detection of nucleic acids. The sensing concept uses the charge inversion that occurs in the sensing zone of a nanopore upon binding of negatively charged microRNA strands to posit...
متن کاملSensing Single Protein Molecules with Solid-State Nanopores
This chapter is focused on the development of experiments and theory of using solid-state nanopores for sensing single protein molecules in their native and unfolded states. Proteins serve diverse roles such as transport carriers, catalysts, molecular motors, cellular structural support, and others that make life possible. Because of these widely differing roles, proteins have an enormously div...
متن کاملOptical sensing and analyte manipulation in solid-state nanopores.
The field of nanopore sensing has been gaining increasing attention. Much progress has been made towards biotechnological applications that involve electrical measurements of temporal changes in the ionic current flowing through the pore. But in many cases the electrical signal is restricted by the non-ideal noise components, limited throughput, and insufficient temporal or spatial resolutions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Sensors
سال: 2018
ISSN: 2379-3694,2379-3694
DOI: 10.1021/acssensors.8b01501